Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(1): e0152223, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38169306

RESUMEN

Understanding how different amino acids affect the HIV-1 envelope (Env) trimer will greatly help the design and development of vaccines that induce broadly neutralizing antibodies (bnAbs). A tryptophan residue at position 375 that opens the CD4 binding site without modifying the trimer apex was identified using our saturation mutagenesis strategy. 375W was introduced into a large panel of 27 transmitted/founder, acute stage, chronic infection, and AIDS macrophage-tropic and non-macrophage-tropic primary envelopes from different clades (A, B, C, D, and G) as well as complex and circulating recombinants. We evaluated soluble CD4 and monoclonal antibody neutralization of WT and mutant Envs together with macrophage infection. The 375W substitution increased sensitivity to soluble CD4 in all 27 Envs and macrophage infection in many Envs including an X4 variant. Importantly, 375W did not impair or abrogate neutralization by potent bnAbs. Variants that were already highly macrophage tropic were compromised for macrophage tropism, indicating that other structural factors are involved. Of note, we observed a macrophage-tropic (clade G) and intermediate macrophage-tropic (clades C and D) primary Envs from the blood and not from the central nervous system (CNS), indicating that such variants could be released from the brain or evolve outside the CNS. Our data also indicate that "intermediate" macrophage-tropic variants should belong to a new class of HIV-1 tropism. These Envs infected macrophages more efficiently than non-macrophage-tropic variants without reaching the high levels of macrophage-tropic brain variants. In summary, we show that 375W is ideal for inclusion into HIV-1 vaccines, increasing Env binding to CD4 for widely diverse Envs from different clades and disease stages.IMPORTANCESubstitutions exposing the CD4 binding site (CD4bs) on HIV-1 trimers but still occluding non-neutralizing, immunogenic epitopes are desirable to develop HIV-1 vaccines. If such substitutions induce similar structural changes in trimers across diverse clades, they could be exploited for the development of multi-clade envelope (Env) vaccines. We show that the 375W substitution increases CD4 affinity for envelopes of all clades, circulating recombinant forms, and complex Envs tested, independent of disease stage. Clade B and C Envs with an exposed CD4bs were described for macrophage-tropic strains from the central nervous system (CNS). Here, we show that intermediate (clades C and D) and macrophage-tropic (clade G) envelopes can be detected outside the CNS. Vaccines targeting the CD4bs will be particularly effective against such strains and CNS disease.


Asunto(s)
Infecciones por VIH , VIH-1 , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos ampliamente neutralizantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/genética , Mutación , Desarrollo de Vacunas , Macrófagos/virología , Antígenos CD4
2.
Arch Virol ; 164(2): 473-482, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415390

RESUMEN

Macrophage (mac)-tropic human immnunodeficiency virus type 1 (HIV-1) and simian immnunodeficiency virus (SIV) in brain are associated with neurological disease. Mac-tropic HIV-1 evolves enhanced CD4 interactions that enable macrophage infection via CD4, which is in low abundance. In contrast, mac-tropic SIV is associated with CD4-independent infection via direct CCR5 binding. Recently, mac-tropic simian-human immunodeficiency virus (SHIV) from macaque brain was also reported to infect cells via CCR5 without CD4. Since SHIV envelope proteins (Envs) are derived from HIV-1, we tested more than 100 HIV-1 clade B Envs for infection of CD4-negative, CCR5+ Cf2Th/CCR5 cells. However, no infection was detected. Our data suggest that there are differences in the evolution of mac-tropism in SIV and SHIV compared to HIV-1 clade B due to enhanced interactions with CCR5 and CD4, respectively.


Asunto(s)
Encéfalo/virología , Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/complicaciones , VIH-1/metabolismo , Enfermedades del Sistema Nervioso/etiología , Encéfalo/metabolismo , Antígenos CD4/genética , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Macrófagos/metabolismo , Macrófagos/virología , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/virología , Filogenia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
3.
J Neurovirol ; 24(4): 439-453, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29687407

RESUMEN

Despite combined antiretroviral therapy (cART), HIV+ patients still develop neurological disorders, which may be due to persistent HIV infection and selective evolution in brain tissues. Single-molecule real-time (SMRT) sequencing technology offers an improved opportunity to study the relationship among HIV isolates in the brain and lymphoid tissues because it is capable of generating thousands of long sequence reads in a single run. Here, we used SMRT sequencing to generate ~ 50,000 high-quality full-length HIV envelope sequences (> 2200 bp) from seven autopsy tissues from an HIV+/cART+ subject, including three brain and four non-brain sites. Sanger sequencing was used for comparison with SMRT data and to clone functional pseudoviruses for in vitro tropism assays. Phylogenetic analysis demonstrated that brain-derived HIV was compartmentalized from HIV outside the brain and that the variants from each of the three brain tissues grouped independently. Variants from all peripheral tissues were intermixed on the tree but independent of the brain clades. Due to the large number of sequences, a clustering analysis at three similarity thresholds (99, 99.5, and 99.9%) was also performed. All brain sequences clustered exclusive of any non-brain sequences at all thresholds; however, frontal lobe sequences clustered independently of occipital and parietal lobes. Translated sequences revealed potentially functional differences between brain and non-brain sequences in the location of putative N-linked glycosylation sites (N-sites), V1 length, V3 charge, and the number of V4 N-sites. All brain sequences were predicted to use the CCR5 co-receptor, while most non-brain sequences were predicted to use CXCR4 co-receptor. Tropism results were confirmed by in vitro infection assays. The study is the first to use a SMRT sequencing approach to study HIV compartmentalization in tissues and supports other reports of limited trafficking between brain and non-brain sequences during cART. Due to the long sequence length, we could observe changes along the entire envelope gene, likely caused by differential selective pressure in the brain that may contribute to neurological disease.


Asunto(s)
Encéfalo/virología , Infecciones por VIH/virología , VIH-1/fisiología , Tropismo Viral/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Adulto , Infecciones por VIH/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Macrófagos/virología , Masculino , Filogenia , Provirus/genética , Receptores CXCR4
4.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118121

RESUMEN

HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities.IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV's envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein.


Asunto(s)
Antígenos CD4/metabolismo , VIH-1/fisiología , Macrófagos/metabolismo , Macrófagos/virología , Receptores CCR5/metabolismo , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Antígenos CD4/genética , Línea Celular , Epítopos de Linfocito T/inmunología , Citometría de Flujo , Expresión Génica , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Macrófagos/inmunología , Pruebas de Neutralización , Fragmentos de Péptidos/inmunología , Unión Proteica , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
5.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768859

RESUMEN

Untreated HIV-positive (HIV-1+) individuals frequently suffer from HIV-associated neurocognitive disorders (HAND), with about 30% of AIDS patients suffering severe HIV-associated dementias (HADs). Antiretroviral therapy has greatly reduced the incidence of HAND and HAD. However, there is a continuing problem of milder neurocognitive impairments in treated HIV+ patients that may be increasing with long-term therapy. In the present study, we investigated whether envelope (env) genes could be amplified from proviral DNA or RNA derived from brain tissue of 12 individuals with normal neurology or minor neurological conditions (N/MC individuals). The tropism and characteristics of the brain-derived Envs were then investigated and compared to those of Envs derived from immune tissue. We showed that (i) macrophage-tropic R5 Envs could be detected in the brain tissue of 4/12 N/MC individuals, (ii) macrophage-tropic Envs in brain tissue formed compartmentalized clusters distinct from non-macrophage-tropic (non-mac-tropic) Envs recovered from the spleen or brain, (iii) the evidence was consistent with active viral expression by macrophage-tropic variants in the brain tissue of some individuals, and (iv) Envs from immune tissue of the N/MC individuals were nearly all tightly non-mac-tropic, contrasting with previous data for neuro-AIDS patients where immune tissue Envs mediated a range of macrophage infectivities, from background levels to modest infection, with a small number of Envs from some patients mediating high macrophage infection levels. In summary, the data presented here show that compartmentalized and active macrophage-tropic HIV-1 variants are present in the brain tissue of individuals before neurological disease becomes overt or serious.IMPORTANCE The detection of highly compartmentalized macrophage-tropic R5 Envs in the brain tissue of HIV patients without serious neurological disease is consistent with their emergence from a viral population already established there, perhaps from early disease. The detection of active macrophage-tropic virus expression, and probably replication, indicates that antiretroviral drugs with optimal penetration through the blood-brain barrier should be considered even for patients without neurological disease (neuro-disease). Finally, our data are consistent with the brain forming a sanctuary site for latent virus and low-level viral replication in the absence of neuro-disease.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/virología , Encéfalo/virología , VIH-1/aislamiento & purificación , VIH-1/fisiología , Macrófagos/virología , Tropismo Viral , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Barrera Hematoencefálica , Genes env , VIH-1/genética , Humanos , Virión/genética , Replicación Viral
6.
PLoS Pathog ; 13(3): e1006255, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28264054

RESUMEN

A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Leucocitos Mononucleares/virología , Tropismo Viral/fisiología , Adaptación Fisiológica/fisiología , Separación Celular , Humanos , Macrófagos/virología , Internalización del Virus
7.
J Drug Deliv ; 2016: 8520629, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27965897

RESUMEN

Glucan particles (GPs) are hollow, porous 3-5 µm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-ß-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing ß-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles.

8.
PLoS Pathog ; 12(11): e1005988, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27820858

RESUMEN

The conformation of HIV-1 envelope (Env) glycoprotein trimers is key in ensuring protection against waves of neutralizing antibodies generated during infection, while maintaining sufficient exposure of the CD4 binding site (CD4bs) for viral entry. The CD4 binding loop on Env is an early contact site for CD4 while penetration of a proximal cavity by CD4 triggers Env conformational changes for entry. The role of residues in the CD4 binding loop in regulating the conformation of the trimer and trimer association domain (TAD) was investigated using a novel saturation mutagenesis approach. Single mutations identified, resulted in distinct trimer conformations affecting CD4bs exposure, the glycan shield and the TAD across diverse HIV-1 clades. Importantly, mutations that improve access to the CD4bs without exposing the immunodominant V3 loop were identified. The different trimer conformations identified will affect the specificity and breadth of nabs elicited in vivo and are important to consider in design of Env immunogens for vaccines.


Asunto(s)
Antígenos CD4/química , Proteína gp120 de Envoltorio del VIH/química , VIH-1/inmunología , Sitios de Unión , Antígenos CD4/inmunología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Concentración 50 Inhibidora , Macrófagos/virología , Mutagénesis , Conformación Proteica , ARN Viral/química
9.
Retrovirology ; 12: 48, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26055104

RESUMEN

BACKGROUND: HIV-1 variants carrying non-macrophage-tropic HIV-1 R5 envelopes (Envs) are predominantly transmitted and persist in immune tissue even in AIDS patients who have highly macrophage-tropic variants in the brain. Non-macrophage-tropic R5 Envs require high levels of CD4 for infection contrasting with macrophage-tropic Envs, which can efficiently mediate infection of cells via low CD4. Here, we investigated whether non-macrophage-tropic R5 Envs from the acute stage of infection (including transmitted/founder Env) mediated more efficient infection of ectocervical explant cultures compared to non-macrophage-tropic and highly macrophage-tropic R5 Envs from late disease. RESULTS: We used Env+ pseudovirions that carried a GFP reporter gene to measure infection of the first cells targeted in ectocervical explant cultures. In straight titrations of Env+ pseudovirus supernatants, mac-tropic R5 Envs from late disease mediated slightly higher infectivities for ectocervical explants although this was not significant. Surprisingly, explant infection by several T/F/acute Envs was lower than for Envs from late disease. However, when infectivity for explants was corrected to account for differences in the overall infectivity of each Env+ pseudovirus (measured on highly permissive HeLa TZM-bl cells), non-mac-tropic early and late disease Env+ pseudoviruses mediated significantly higher infection. This observation suggests that cervical tissue preferentially supports non-mac-tropic Env+ viruses compared to mac-tropic viruses. Finally, we show that T-cells were the main targets for infection regardless of whether explants were stimulated with T-cell or monocyte/macrophage cytokines. There was no evidence of macrophage infection even for pseudovirions carrying highly mac-tropic Envs from brain tissue or for the highly mac-tropic, laboratory strain, BaL, which targeted T-cells in the explant tissue. CONCLUSIONS: Our data support ectocervical tissue as a favorable environment for non-mac-tropic HIV-1 R5 variants and emphasize the role of T-cells as initial targets for infection even for highly mac-tropic variants.


Asunto(s)
VIH-1/fisiología , Linfocitos T/virología , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Células Cultivadas , Humanos
10.
Retrovirology ; 12: 25, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25809903

RESUMEN

BACKGROUND: Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs. RESULTS: Highly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+ virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs. CONCLUSIONS: Our results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Macrófagos/virología , Tropismo Viral , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Células Cultivadas , Humanos
11.
J Virol ; 87(1): 187-98, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23055568

RESUMEN

HIV-1 R5 viruses vary extensively in their capacity to infect macrophages. R5 viruses that confer efficient infection of macrophages are able to exploit low levels of CD4 for infection and predominate in brain tissue, where macrophages are a major target for infection. HIV-1 R5 founder viruses that are transmitted were reported to be non-macrophage-tropic. Here, we investigated the sensitivities of macrophage-tropic and non-macrophage-tropic R5 envelopes to neutralizing antibodies. We observed striking differences in the sensitivities of Env(+) pseudovirions to soluble CD4 (sCD4) and to neutralizing monoclonal antibodies (MAbs) that target the CD4 binding site. Macrophage-tropic R5 Envs were sensitive to sCD4, while non-macrophage-tropic Envs were significantly more resistant. In contrast, all Envs were sensitive to VRC01 regardless of tropism, while MAb b12 conferred an intermediate neutralization pattern where all the macrophage-tropic and about half of the non-macrophage-tropic Envs were sensitive. CD4, b12, and VRC01 share binding specificities on the outer domain of gp120. However, these antibodies differ in their ability to induce conformational changes on the trimeric envelope and in specificity for residues on the V1V2 loop stem and ß20-21 junction that are targets for CD4 in recruiting the bridging sheet. These distinct specificities of CD4, b12, and VRC01 likely explain the observed differences in Env sensitivity to inhibition by these reagents and provide an insight into the envelope mechanisms that control macrophage tropism. We present a model where the efficiency of bridging-sheet recruitment by CD4 is a major determinant of HIV-1 R5 envelope sensitivity to soluble CD4 and macrophage tropism.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Macrófagos/virología , Receptores del VIH/metabolismo , Tropismo Viral , Acoplamiento Viral , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Humanos , Modelos Biológicos , Proteínas Recombinantes/metabolismo
12.
Retrovirology ; 9: 20, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22420378

RESUMEN

BACKGROUND: Transmitted HIV-1 clade B or C R5 viruses have been reported to infect macrophages inefficiently, while other studies have described R5 viruses in late disease with either an enhanced macrophage-tropism or carrying envelopes with an increased positive charge and fitness. In contrast, our previous data suggested that viruses carrying non-macrophage-tropic R5 envelopes were still predominant in immune tissue of AIDS patients. To further investigate the tropism and charge of HIV-1 viruses in late disease, we evaluated the properties of HIV-1 envelopes amplified from immune and brain tissues of AIDS patients with neurological complications. RESULTS: Almost all envelopes amplified were R5. There was clear compartmentalization of envelope sequences for four of the five subjects. However, strong compartmentalization of macrophage-tropism in brain was observed even when brain and immune tissue envelope sequences were not segregated. R5 envelopes from immune tissue of four subjects carried a higher positive charge compared to brain envelopes. We also confirm a significant correlation between macrophage tropism and sensitivity to soluble CD4, a weak association with sensitivity to the CD4 binding site antibody, b12, but no clear relationship with maraviroc sensitivity. CONCLUSIONS: Our study shows that non-macrophage-tropic R5 envelopes carrying gp120s with an increased positive charge were predominant in immune tissue in late disease. However, highly macrophage-tropic variants with lower charged gp120s were nearly universal in the brain. These results are consistent with HIV-1 R5 envelopes evolving gp120s with an increased positive charge in immune tissue or sites outside the brain that likely reflect an adaptation for increased replication or fitness for CD4+ T-cells. Our data are consistent with the presence of powerful pressures in brain and in immune tissues selecting for R5 envelopes with very different properties; high macrophage-tropism, sCD4 sensitivity and low positive charge in brain and non-macrophage-tropism, sCD4 resistance and high positive charge in immune tissue.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/virología , Encéfalo/inmunología , Encéfalo/virología , Proteína gp120 de Envoltorio del VIH/química , VIH-1/fisiología , Macrófagos/virología , Tropismo Viral , Síndrome de Inmunodeficiencia Adquirida/inmunología , Adaptación Biológica , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , VIH-1/crecimiento & desarrollo , VIH-1/patogenicidad , Humanos , Datos de Secuencia Molecular , Selección Genética , Análisis de Secuencia de ADN
13.
Retrovirology ; 9: 9, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22284192

RESUMEN

BACKGROUND: The conserved CD4 binding site (CD4bs) on HIV-1 gp120 is a major target for vaccines. It is a priority to determine sites and structures within the CD4bs that are important for inclusion in vaccines. We studied a gp120 pocket penetrated by W100 of the potent CD4bs monoclonal antibody (mab), b12. We compared HIV-1 envelopes and corresponding mutants that carried blocked W100 pockets to evaluate whether other CD4bs mabs target this site. FINDINGS: All CD4bs mabs tested blocked soluble CD4 binding to gp120 consistent with their designation as CD4bs directed antibodies. All CD4bs mabs tested neutralized pseudovirions carrying NL4.3 wild type (wt) envelope. However, only b12 failed to neutralize pseudoviruses carrying mutant envelopes with a blocked W100 pocket. In addition, for CD4bs mabs that neutralized pseudovirions carrying primary envelopes, mutation of the W100 pocket had little or no effect on neutralization sensitivity. CONCLUSIONS: Our data indicate that the b12 W100 pocket on gp120 is infrequently targeted by CD4bs mabs. This site is therefore not a priority for preservation in vaccines aiming to elicit antibodies targeting the CD4bs.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Antígenos CD4/metabolismo , Humanos , Unión Proteica , Receptores del VIH/metabolismo
15.
Retrovirology ; 8: 67, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21843318

RESUMEN

BACKGROUND: Understanding the properties of HIV-1 variants that are transmitted from women to their infants is crucial to improving strategies to prevent transmission. In this study, 162 full-length envelope (env) clones were generated from plasma RNA obtained from 5 HIV-1 Clade B infected mother-infant pairs. Following extensive genotypic and phylogenetic analyses, 35 representative clones were selected for functional studies. RESULTS: Infant quasispecies were highly homogeneous and generally represented minor maternal variants, consistent with transmission across a selective bottleneck. Infant clones did not differ from the maternal in env length, or glycosylation. All infant variants utilized the CCR5 co-receptor, but were not macrophage tropic. Relatively high levels (IC50 ≥ 100 µg/ml) of autologous maternal plasma IgG were required to neutralize maternal and infant viruses; however, all infant viruses were neutralized by pooled sera from HIV-1 infected individuals, implying that they were not inherently neutralization-resistant. All infant viruses were sensitive to the HIV-1 entry inhibitors Enfuvirtide and soluble CD4; none were resistant to Maraviroc. Sensitivity to human monoclonal antibodies 4E10, 2F5, b12 and 2G12 varied. CONCLUSIONS: This study provides extensive characterization of the genotypic and functional properties of HIV-1 env shortly after transmission. We present the first detailed comparisons of the macrophage tropism of infant and maternal env variants and their sensitivity to Maraviroc, the only CCR5 antagonist approved for therapeutic use. These findings may have implications for improving approaches to prevent mother-to-child HIV-1 transmission.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , Enfermedades del Recién Nacido/virología , Transmisión Vertical de Enfermedad Infecciosa , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Adulto , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/clasificación , VIH-1/aislamiento & purificación , VIH-1/metabolismo , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/inmunología , Masculino , Datos de Secuencia Molecular , Filogenia , Receptores CCR5/inmunología
16.
PLoS Pathog ; 7(5): e1002060, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21637819

RESUMEN

Tissue macrophages are derived exclusively from blood monocytes, which as monocyte-derived macrophages support HIV-1 replication. However, among human tissue macrophages only intestinal macrophages are non-permissive to HIV-1, suggesting that the unique microenvironment in human intestinal mucosa renders lamina propria macrophages non-permissive to HIV-1. We investigated this hypothesis using blood monocytes and intestinal extracellular matrix (stroma)-conditioned media (S-CM) to model the exposure of newly recruited monocytes and resident macrophages to lamina propria stroma, where the cells take up residence in the intestinal mucosa. Exposure of monocytes to S-CM blocked up-regulation of CD4 and CCR5 expression during monocyte differentiation into macrophages and inhibited productive HIV-1 infection in differentiated macrophages. Importantly, exposure of monocyte-derived macrophages simultaneously to S-CM and HIV-1 also inhibited viral replication, and sorted CD4+ intestinal macrophages, a proportion of which expressed CCR5+, did not support HIV-1 replication, indicating that the non-permissiveness to HIV-1 was not due to reduced receptor expression alone. Consistent with this conclusion, S-CM also potently inhibited replication of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein, which provides CD4/CCR5-independent entry. Neutralization of TGF-ß in S-CM and recombinant TGF-ß studies showed that stromal TGF-ß inhibited macrophage nuclear translocation of NF-κB and HIV-1 replication. Thus, the profound inability of intestinal macrophages to support productive HIV-1 infection is likely the consequence of microenvironmental down-regulation of macrophage HIV-1 receptor/coreceptor expression and NF-κB activation.


Asunto(s)
Antígenos CD4/metabolismo , Regulación hacia Abajo/fisiología , VIH-1/fisiología , Mucosa Intestinal/virología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Receptores CCR5/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , VIH-1/aislamiento & purificación , VIH-1/patogenicidad , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
17.
J Virol ; 85(12): 6024-37, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21471230

RESUMEN

HIV-1 circulates within an infected host as a genetically heterogeneous viral population. Viral intrahost diversity is shaped by substitutional evolution and recombination. Although many studies have speculated that recombination could have a significant impact on viral phenotype, this has never been definitively demonstrated. We report here phylogenetic and subsequent phenotypic analyses of envelope genes obtained from HIV-1 populations present in different anatomical compartments. Assessment of env compartmentalization from immunologically discrete tissues was assessed utilizing a single genome amplification approach, minimizing in vitro-generated artifacts. Genetic compartmentalization of variants was frequently observed. In addition, multiple incidences of intercompartment recombination, presumably facilitated by low-level migration of virus or infected cells between different anatomic sites and coinfection of susceptible cells by genetically divergent strains, were identified. These analyses demonstrate that intercompartment recombination is a fundamental evolutionary mechanism that helps to shape HIV-1 env intrahost diversity in natural infection. Analysis of the phenotypic consequences of these recombination events showed that genetic compartmentalization often correlates with phenotypic compartmentalization and that intercompartment recombination results in phenotype modulation. This represents definitive proof that recombination can generate novel combinations of phenotypic traits which differ subtly from those of parental strains, an important phenomenon that may have an impact on antiviral therapy and contribute to HIV-1 persistence in vivo.


Asunto(s)
Variación Genética , Inhibidores de Fusión de VIH/farmacología , VIH-1/genética , VIH-1/patogenicidad , Recombinación Genética , Tropismo Viral/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Genes env/genética , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/efectos de los fármacos , Células HeLa , Humanos , Masculino , Datos de Secuencia Molecular , Fenotipo , Filogenia , Análisis de Secuencia de ADN
18.
J Virol ; 85(5): 2397-405, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159865

RESUMEN

The CD4 binding site (CD4bs) on the HIV-1 envelope plays a major role in determining the capacity of R5 viruses to infect primary macrophages. Thus, envelope determinants within or proximal to the CD4bs have been shown to control the use of low CD4 levels on macrophages for infection. These residues affect the affinity for CD4 either directly or indirectly by altering the exposure of CD4 contact residues. Here, we describe a single amino acid determinant in the V1 loop that also modulates macrophage tropism. Thus, we identified an E153G substitution that conferred high levels of macrophage infectivity for several heterologous R5 envelopes, while the reciprocal G153E substitution abrogated infection. Shifts in macrophage tropism were associated with dramatic shifts in sensitivity to the V3 loop monoclonal antibody (MAb), 447-52D and soluble CD4, as well as more modest changes in sensitivity to the CD4bs MAb, b12. These observations are consistent with an altered conformation or exposure of the V3 loop that enables the envelope to use low CD4 levels for infection. The modest shifts in b12 sensitivity suggest that residue 153 impacts on the exposure of the CD4bs. However, the more intense shifts in sCD4 sensitivity suggest additional mechanisms that likely include an increased ability of the envelope to undergo conformational changes following binding to suboptimal levels of cell surface CD4. In summary, we show that a conserved determinant in the V1 loop modulates the V3 loop to prime low CD4 use and macrophage infection.


Asunto(s)
Antígenos CD4/inmunología , Secuencia Conservada , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Macrófagos/inmunología , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , VIH-1/inmunología , Células HeLa , Humanos , Macrófagos/virología , Datos de Secuencia Molecular , Alineación de Secuencia
19.
Future Virol ; 5(4): 435-451, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20930940

RESUMEN

HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.

20.
J Virol ; 84(18): 9608-12, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20610714

RESUMEN

HIV-1 R5 envelopes vary considerably in their capacities to exploit low CD4 levels on macrophages for infection and in their sensitivities to the CD4 binding site (CD4bs) monoclonal antibody (MAb) b12 and the glycan-specific MAb 2G12. Here, we show that nonglycan determinants flanking the CD4 binding loop, which affect exposure of the CD4bs, also modulate 2G12 neutralization. Our data indicate that such residues act via a mechanism that involves shifts in the orientation of proximal glycans, thus modulating the sensitivity of 2G12 neutralization and affecting the overall presentation and structure of the glycan shield.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Polisacáridos/inmunología , Sitios de Unión , Anticuerpos ampliamente neutralizantes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...